電気学会論文誌E(センサ・マイクロマシン部門誌)
Online ISSN : 1347-5525
Print ISSN : 1341-8939
ISSN-L : 1341-8939
特集論文
イベントドリブン型MEMS-LSI集積化触覚センサアレイシステムを用いた物体判定
室山 真徳田中 秀治
著者情報
ジャーナル 認証あり

2023 年 143 巻 7 号 p. 164-170

詳細
抄録

We have developed tactile sensor systems for next-generation robots. To install a large number of tactile sensors, we have proposed MEMS-LSI integrated tactile sensors. The integrated device has following features: capacitive type 3-axis force sensing, embedded diode-based temperature sensing, signal processing for sensing data digitalization, and event-driven response for efficient serial bus communication. This paper demonstrates a sensor array system as up-to 40 integrated tactile sensors which are connected on one bus line. After acquiring the sensing data from the sensor array system, we applied a machine learning technique for target object judgment. The objective of the judgment is to classify the targets into normal object and abnormal object. With the sensor array system, data preprocessing and tuned RNN/LSTM neural network models, we achieved high-accuracy, high-precision, and high-recall scores for the experiment of the judgment.

著者関連情報
© 2023 電気学会
前の記事 次の記事
feedback
Top