IEEJ Transactions on Sensors and Micromachines
Online ISSN : 1347-5525
Print ISSN : 1341-8939
ISSN-L : 1341-8939
Special Issue Paper
Investigating the Radiation Shielding Properties of Iron Oxide-enhanced Heavy Concrete through Gamma Transmission Method
Le Hoang MinhDang Van HauNguyen Duy KhaiPhan Nguyen Hoang LongTran Thi My DuyenNguyen Thi Truc LinhHuynh Dinh ChuongTran Thien Thanh
Author information
JOURNAL RESTRICTED ACCESS

2024 Volume 144 Issue 10 Pages 290-294

Details
Abstract

This study investigates the radiation shielding properties of construction materials, with a focus on iron oxide (Fe2O3)-enhanced heavy concrete. It covers a range of Fe2O3 concentrations from 0% to 12.9% in concrete formulations and uses M200-grade standard samples as references. The study observes a linear increase in sample density as Fe2O3 content rises. A gamma transmission measurement system utilizing NaI(Tl) detectors assesses shielding effectiveness. It measures linear attenuation coefficients for concrete samples at 59.54 keV (241Am), 661.7 keV (137Cs), and 1332 keV (60Co) energy levels. Precise measurements result from careful calibration of detectors and radiation sources, ensuring a focused gamma ray beam. The findings establish a direct correlation between linear attenuation coefficients and Fe2O3 content at each energy level. Notably, samples with the highest Fe2O3 concentration exhibit significant increases in attenuation coefficients, such as 19.6% (59.54 keV), 7.75% (661.7 keV), and 13.5% (1332 keV), compared to standard samples. These insights suggest the potential use of iron oxide-enhanced heavy concrete as effective radiation shielding in construction applications.

Content from these authors
© 2024 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top