電気学会論文誌E(センサ・マイクロマシン部門誌)
Online ISSN : 1347-5525
Print ISSN : 1341-8939
ISSN-L : 1341-8939
特集研究開発レター
高時間分解ACナノポア測定と機械学習による網羅的な細菌の同定
坂本 まあみ堀 宏輔山本 貴富喜吉田 拓音中島 玄詞
著者情報
ジャーナル 認証あり

2024 年 144 巻 7 号 p. 181-182

詳細
抄録

In this study, we evaluated the performance of a comprehensive bacterial identification method that combines AC nanopore methods and machine learning. The nanopore device for bacteria was fabricated, and the classification performance was evaluated for 11 kinds of bacteria. The classification accuracy using the convolutional neural network (CNN) was 96.6%, and that using the random forest method was 41.5%. These results indicate that the combination of the AC nanopore method and CNN is a promising sensing method that can classify bacteria with high accuracy.

著者関連情報
© 2024 電気学会
前の記事 次の記事
feedback
Top