International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Additive Manufacturing with Metals
Formation Mechanism of Pores Inside Structure Fabricated by Metal-Based Additive Manufacturing
Kyota EgashiraTatsuaki FurumotoKiichi HishidaSatoshi AbeTomohiro KoyanoYohei HashimotoAkira Hosokawa
著者情報
ジャーナル オープンアクセス

2019 年 13 巻 3 号 p. 330-337

詳細
抄録

The powder bed fusion (PBF) technique is a metal-based additive manufacturing (AM) method in which metal powder is deposited on a substrate and melted by selective laser-beam irradiation. Given that the process and parameters of metal-based AM are complicated, there are various problems in high-precision fabrication. One of these is that although metal-based AM can be used for fabrication of high-density parts, pores can easily form inside the fabricated structure owing to process instabilities. Pore formation degrades the mechanical strength of the fabricated structure. Therefore, this study investigated the pore formation mechanism inside a structure fabricated by PBF. Pore suppression by controlling the substrate temperature was also evaluated. Small- and large-sized pores with diameters of 10 μm and more than 50 μm, respectively, were found. Furthermore, differences in pore formation in the cross-section of the fabricated structure were observed owing to a variation in the volume-specific energy density and substrate temperature. At a substrate temperature of 25°C, the number of pores decreased more at the upper position than at the lower position owing to repeated melting and solidification under the laser-beam irradiation. At a substrate temperature of 200°C, the number of pores decreased significantly more than at 25°C. Furthermore, as the substrate temperature increased, the wettability of the molten metal improved, resulting in smaller contact angles of the fabricated structure in the single-line track. In PBF, multiple lines are fabricated in each layer. At low substrate temperatures, interstices were formed between the lines owing to the low wettability of the molten metal. These interstices acted as the origins of pores when the next layer was fabricated. Heating the substrate made the surface of the structure smooth owing to the high wettability of the molten metal and a reduction in the number of pores. Therefore, the formation of large pores could be reduced by controlling the substrate temperature.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top