Scientiae Mathematicae Japonicae
Online ISSN : 1346-0447
THE CLASSICAL VOLTERRA OPERATOR AND SCHUR’S THEOREM
ALEJANDRO RODRÍGUEZ-MARTÍNEZ
著者情報
ジャーナル フリー

2009 年 70 巻 1 号 p. 23-27

詳細
抄録
In this work we provide a counterexample for Schur’s Theorem on triangular matrices on infinite dimensional spaces. Moreover, the counterexample provided is a compact quasinilpotent operator. Indeed, the result neither depends on the index of the chosen basis for the matrix representations nor on the upper-lower choice for the triangular matrix. As a consequence, we see the optimality of a result by Halmos on matrix representations of operators. Namely, Halmos proved that each operator can be represented by a matrix with finite columns. Finally, we ‘answer’ a philosophical question posed by J. B. Conway in [1, p.213].
著者関連情報
© 2009 International Society for Mathematical Sciences
前の記事 次の記事
feedback
Top