Journal of Applied Glycoscience
Online ISSN : 1880-7291
Print ISSN : 1344-7882
ISSN-L : 1344-7882
Proceedings of the Symposium on Amylases and Related Enzymes, 2007
Functions of Novel Glycosidases Isolated from Bifidobacteria
Takane KatayamaJun WadaKiyotaka FujitaMasashi KiyoharaHisashi AshidaKenji Yamamoto
Author information
JOURNAL FREE ACCESS

2008 Volume 55 Issue 2 Pages 101-109

Details
Abstract

The genes for 1,2-α-L-fucosidase and endo-α-N-acetylgalactosaminidase have been cloned from Bifidobacterium bifidum JCM1254 and Bifidobacterium longum JCM1217, respectively. The catalytic domain of 1,2-α-L-fucosidase (AfcA) specifically hydrolyzed the terminal α-(1→2)-fucosidic linkages of human milk oligosaccharides and sugar chains of glycoproteins. It exhibited high sequence similarity to several hypothetical proteins in a database, and thus, novel glycoside hydrolase (GH) family 95 has been created. Catalytically important residues of the domain, which were revealed by X-ray crystallographic analysis, were well conserved within the family except for one residue located at the +1 subsite. Endo-α-N-acetylgalactosaminidase (EngBF) that was expressed as C-terminally histidine-tagged protein was found to liberate Galβ1,3GalNAc disaccharide from Core 1-type O-glycans. Its homologues were found in the genomes of several bacteria, and thus a novel GH family (GH101) has been established. Considering that both AfcA and EngBF were able to degrade natural substrates present in intestine, it was envisaged that the enzymes play important roles for the organisms in making their habitats in the colon. The recent finding of the GNB/LNB pathway in bifidobacterial cells by Kitaoka’s group further supports this notion.

Content from these authors
© 2008 by The Japanese Society of Applied Glycoscience
Previous article Next article
feedback
Top