電気関係学会九州支部連合大会講演論文集
平成21年度電気関係学会九州支部連合大会(第62回連合大会)講演論文集
セッションID: 09-1A-10
会議情報

状態空間のボロノイ分割を利用した強化学習
KATHY THI渕田 孝康櫻木 敦
著者情報
キーワード: 人工知能
会議録・要旨集 フリー

詳細
抄録
The focus of this research is Voronoi diagrams for space partitioning creates Voronoi regions where Voronoi Q-value Element (VQE) are to be located in continuous space. A Voronoi diagram has been proposed for solving the waste of places in continuous space. Reinforcement learning is one of the most important learning methods for machine learning and Q-learning is a typical technique of reinforcement learning. When using VQE for Voronoi space division of reinforcement learning, it has been acknowledged by this study and experiments.
著者関連情報
© 2009 電気関係学会九州支部連合大会委員会
前の記事 次の記事
feedback
Top