Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Feature: Frontiers in Ceramic Research Based on Materials Science of Crystal Defect Cores: Full papers
Global structure optimization following imaginary phonon modes accelerated by machine learning potentials in Cu, Ag, and Au
Takuya NaruseAtsuto SekoIsao Tanaka
著者情報
ジャーナル オープンアクセス

2023 年 131 巻 10 号 p. 746-750

詳細
抄録

Algorithms of crystal structure prediction produce many different structures, some of which are dynamically unstable. Following the imaginary phonon modes obtained by lattice dynamics calculations, dynamically stable structures can be rationally derived from unstable structures. Following the imaginary phonon modes, however, generally requires lengthy and often prohibitively expensive calculations. In this study, we employ polynomial machine learning potentials to predict globally stable and metastable structures following the imaginary phonon modes. As a result, we discover many dynamically stable and metastable structures efficiently, and the face-centered cubic structure is the globally stable structure consistent with experimental reports for the elemental Cu, Ag, and Au.

著者関連情報
© 2023 The Ceramic Society of Japan

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事 次の記事
feedback
Top