Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special Issue on Application of GNSS for Mitigating Natural Disaster
Total Electron Content Observations by Dense Regional and Worldwide International Networks of GNSS
Takuya TsugawaMichi NishiokaMamoru IshiiKornyanat HozumiSusumu SaitoAtsuki ShinboriYuichi OtsukaAkinori SaitoSuhaila M. BuhariMardina AbdullahPornchai Supnithi
著者情報
ジャーナル オープンアクセス

2018 年 13 巻 3 号 p. 535-545

詳細
抄録

Two-dimensional ionospheric total electron content (TEC) maps have been derived from ground-based Global Navigation Satellite System (GNSS) receiver networks and applied to studies of various ionospheric disturbances since the mid-1990s. For the purpose of monitoring and researching ionospheric conditions and ionospheric space weather phenomena, we have developed TEC maps of areas over Japan using the dense GNSS network, GNSS Earth Observation NETwork (GEONET), which consists of about 1300 stations and is operated by the Geospatial Information Authority of Japan (GSI). Currently, we are providing high-resolution, two-dimensional maps of absolute TEC, detrended TEC, rate of TEC change index (ROTI), and loss-of-lock on GPS signal over Japan on a real-time basis. Such high-resolution TEC maps using dense GNSS receiver networks are one of the most effective ways to observe, on a scale of several 100 km to 1000 km, ionospheric variations caused by traveling ionospheric disturbances and/or equatorial plasma bubbles, which can degrade single-frequency and differential GNSS positioning/navigation. We have collected all the available GNSS receiver data in the world to expand the TEC observation area. Currently, however, dense GNSS receiver networks are available in only limited areas, such as Japan, North America, and Europe. To expand the two-dimensional TEC observation with high resolution, we have conducted the Dense Regional and Worldwide International GNSS TEC observation (DRAWING-TEC) project, which is engaged in three activities: (1) standardizing GNSS-TEC data, (2) developing a new high-resolution TEC mapping technique, and (3) sharing the standardized TEC data or the information of GNSS receiver network. We have developed a new standardized TEC format, GNSS-TEC EXchange (GTEX), which is included in the Formatted Tables of ITU-R SG 3 Databanks related to Recommendation ITU-R P.311. Sharing the GTEX TEC data would be easier than sharing the GPS/GNSS data among those in the international ionospheric researcher community. The DRAWING-TEC project would promote studies of medium-scale ionospheric variations and their effect on GNSS.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JDR Official Site.
https://www.fujipress.jp/jdr/dr-about/
前の記事 次の記事
feedback
Top