日本感性工学会論文誌
Online ISSN : 1884-5258
ISSN-L : 1884-0833

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

属性を付与したDCGANによる顔画像生成システム
佐川 友里香萩原 将文
著者情報
ジャーナル フリー 早期公開

論文ID: TJSKE-D-17-00085

この記事には本公開記事があります。
詳細
抄録
In this paper, we propose an attribute added face image generation system using Deep Convolutional Generative Adversarial Networks (DCGANs). Convolutional Neural Networks (CNNs) can extract important features of an image and attain high precision in image classification tasks. In the proposed system, image features are extracted using CNNs, and attribute features added to image features, and attributes added images are generated by DCGANs. Specifically, we use the attributes of “smile” and “male”, and work on a task of generating smile images from non-smile images, and a task of generating male images from women images. Since the training of the proposed system requires image pairs including with and without attributes, we use two extraction methods using attribute label and cosine similarity. Attribute features are defined as the averaged difference between image features with and without attributes. We performed two kinds of evaluation experiments, and excellent characteristics were obtained.
著者関連情報
© 2017 日本感性工学会
feedback
Top