日本感性工学会論文誌
Online ISSN : 1884-5258
ISSN-L : 1884-0833

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

ランダムフォレストの半教師あり学習による“顧客の声”の分類
小暮 枝里子齊藤 史哲石津 昌平
著者情報
ジャーナル フリー 早期公開

論文ID: TJSKE-D-18-00020

この記事には本公開記事があります。
詳細
抄録
Analysis technology of document data on customer review has been received broad attention because it can be reflected in improving products and services. It is difficult to read all of the text data, and classification by learning model is effective for acquiring knowledge from the voices of customers. In constructing a learning model for large-scale data, it is important to make effective use of data without labels. In this situation semi-supervised learning has gained a lot of success. The purposes of this research are to reduce the cost of labeling document data by human and to improve prediction accuracy of learning models. In this research, we focused on classification task of customer review data with limited labeling. Through extending the random forest to semi supervised learning, we achieved improved classification accuracy of customer review data.
著者関連情報
© 2018 日本感性工学会
feedback
Top