精密工学会誌
Online ISSN : 1882-675X
Print ISSN : 0912-0289
ISSN-L : 0912-0289
論文
深層学習による工作機械の熱変位推定におけるセンサの故障に対するロバスト性の向上
成松 宏一郎茨木 創一入野 成弘
著者情報
ジャーナル フリー

2021 年 87 巻 8 号 p. 698-703

詳細
抄録

Thermal deformation due to a machine tool's internal heat generation or heat exchange with the ambient environment deteriorates machining accuracy. To suppress the thermal displacement, this paper presents a scheme to estimate and then compensate for the thermal deformation on a turning center by using a deep learning neural network model. A critical issue with its practical implementation is its response to temperature sensor failures. If the compensation drives the machine in an abrupt, unpredictable manner when a sensor fails, it may damage the workpiece or the machine. In this paper, a scheme to train the deep learning model is presented such that it becomes more robust against temperature sensor failures. The deep learning model was trained considering the assumed profiles by the temperature sensors in failure. By using a commercial machine tool, the robustness of the thermal displacement prediction model against the sensor failures is experimentally verified.

著者関連情報
© 2021 公益社団法人 精密工学会
前の記事 次の記事
feedback
Top