精密工学会誌
Online ISSN : 1882-675X
Print ISSN : 0912-0289
ISSN-L : 0912-0289
論文
Advanced Random Mix Augmentation : 深層学習による画像分類の性能向上のための画像処理組み合わせの重複防止を用いたデータ拡張法
林 鍾勳ルイ笠原 純ユネス丸山 宏淺間 一山下 淳
著者情報
ジャーナル フリー

2023 年 89 巻 1 号 p. 105-112

詳細
抄録

Data augmentation is a commonly used method for improving deep learning models in image classification. By adding slightly modified images that do not change the label of the original image to the training data set, the trained model becomes more robust against diverse characteristics of the input image. In this study, we propose a new data augmentation method by improving a previously-known random augmentation method. Our method consists of three steps; 1) determine the set of image modification operators and the number of augmented images, 2) determine the sequence of the image modification operators so that no duplicated sequences are generated, and 3) apply the sequence to augment images. The variety of augmentation is further increased by randomly determining the level (intensity) and the weight of combining the sequences. We applied our method on the CIFAR dataset and show that our method outperforms existing methods.

著者関連情報
© 2023 公益社団法人 精密工学会
前の記事 次の記事
feedback
Top