粉体および粉末冶金
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
Multiferroics & Spintronics
Electric Field Control of Magnetism Using Multiferroic Bismuth Ferrite
R. Ramesh
著者情報
ジャーナル オープンアクセス

2014 年 61 巻 S1 号 p. S19-S24

詳細
抄録
This article presents a review of some salient aspects of a broad class of functional materials, namely complex oxides. These materials, exemplified by the rare earth manganites, superconducting cuprates and more recently multiferroics such as bismuth ferrite, are characterized by a complex crystal chemistry, that is central to competing/cooperating spin, charge, orbital and lattice degrees of freedom. In addition to this, a fundamental defining feature of such materials is the complex nanoscale phase coexistence that appears to be central to the appearance of large responses. The emergence of pulsed laser deposition as a tool to create artificially engineered heterostructures has provided researchers with a powerful approach to create new states of matter at such heterointerfaces. This combined with modern xray, electron, neutron and proximal probes (such as conducting AFM, piezoresponse SPM, etc.) and ab initio theoretical studies has provided us with deep insight into the various physical phenomena that manifest themselves in such materials.
著者関連情報
© 2014 by Japan Society of Powder and Powder Metallurgy

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top