日本統計学会誌
Online ISSN : 2189-1478
Print ISSN : 0389-5602
ISSN-L : 0389-5602
ASYMPTOTIC EXPANSIONS AND CURVATURE MEASURES IN A NONLINEAR REGRESSION MODEL
Koichi Maekawa
著者情報
ジャーナル フリー

1990 年 20 巻 2 号 p. 203-215

詳細
抄録
This paper derives the asymptotic expansions of the distribution function of the maximum likelihood estimator (MLE) and the log likelihood ratio (LR) test in a nonlinear regression model. It reports on an investigation of the effects of nonlinearity of a model on the asymptotic expansions by making use of two kinds of curvature measures: intrinsic curvature and parameter effect curvature defined by Bates and Watts (1980). It shows, after suitable transformation, that the distribution function of the MLE up to O(T-1/2) is related to only the parameter effect curvature. The intrinsic curvature appears only in a term of O(T-1) in the distribution of LR. Furthermore, this paper illustrates that the intrinsic curvature is essentially equivalent to Efron's statistical curvature.
著者関連情報
© Japan Statistical Society
前の記事 次の記事
feedback
Top