Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Automorphism groups of q-trigonal planar Klein surfaces and maximal surfaces
Beatriz ESTRADAErnesto MARTÍNEZ
著者情報
ジャーナル フリー

2009 年 61 巻 2 号 p. 607-623

詳細
抄録
A compact Klein surface X=D⁄Γ, where D denotes the hyperbolic plane and Γ is a surface NEC group, is said to be q-trigonal if it admits an automorphism φ of order 3 such that the quotient X⁄<φ> has algebraic genus q.
In this paper we obtain for each q the automorphism groups of q-trigonal planar Klein surfaces, that is surfaces of topological genus 0 with k≥3 boundary components. We also study the surfaces in this family, which have an automorphism group of maximal order (maximal surfaces). It will be done from an algebraic and geometrical point of view.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2009 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top