Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Generalized capacity, Harnack inequality and heat kernels of Dirichlet forms on metric measure spaces
Alexander Grigor'yanJiaxin HuKa-Sing Lau
著者情報
ジャーナル フリー

2015 年 67 巻 4 号 p. 1485-1549

詳細
抄録
We give necessary and sufficient conditions for sub-Gaussian estimates of the heat kernel of a strongly local regular Dirichlet form on a metric measure space. The conditions for two-sided estimates are given in terms of the generalized capacity inequality and the Poincaré inequality. The main difficulty lies in obtaining the elliptic Harnack inequality under these assumptions. The conditions for upper bound alone are given in terms of the generalized capacity inequality and the Faber–Krahn inequality.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2015 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top