訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren der math. Wiss., 223, Springer, 1976. 2) A. P. Calderón and R. Vaillancourt, On the boundedness of pseudo-differential operators, J. Math. Soc. Japan, 23 (1971), 374-378. 3) A. G. Childs, On the L2-boundedness of pseudo-differential operators, Proc. Amer. Math. Soc., 61 (1976), 252-254. 4) R. R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque57, Société math. France, 1978. 5) H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal., 18 (1975), 115-131. 6) L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc. Symp. on Singular Integrals, Amer. Math. Soc., 10 (1967), 138-183. 7) T. Kato, Boundedness of some pseudo-differential operators, Osaka J. Math., 13 (1976), 1-9. 8) H. Kumano-go, Pseudo-differential Operators, MIT Press, Cambridge, 1982. 9) J. Löfström, Interpolation of weighted spaces of differentiable functions on Rd, Ann. Mat. Pura Appl., 132 (1982), 189-214. 10) A. Miyachi, Estimates for pseudo-differential operators of class S0,0, to appear in Math. Nachr. 11) T. Muramatu, Estimates for the norm of pseudo-differential operators by means of Besov spaces, Lecture Notes in Math., 1256 (1987), 330-349. 12) J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Math. Dept. Duke Univ., Durham, 1976. 13) M. Sugimoto, Lp-boundedness of pseudo-differential operators satisfying Besov estimates II, to appear in J. Fac. Sci. Univ. Tokyo 14) H. Triebel, Theory of Function Spaces, Monogr. in Math., 78, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983.
Right : [1] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren der math. Wiss., 223, Springer, 1976. [2] A. P. Calderón and R. Vaillancourt, On the boundedness of pseudo-differential operators, J. Math. Soc. Japan, 23 (1971), 374-378. [3] A. G. Childs, On the L2-boundedness of pseudo-differential operators, Proc. Amer. Math. Soc., 61 (1976), 252-254. [4] R. R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57, Société math. France, 1978. [5] H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal., 18 (1975), 115-131. [6] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc. Symp. on Singular Integrals, Amer. Math. Soc., 10 (1967), 138-183. [7] T. Kato, Boundedness of some pseudo-differential operators, Osaka J. Math., 13 (1976), 1-9. [8] H. Kumano-go, Pseudo-differential Operators, MIT Press, Cambridge, 1982. [9] J. Löfström, Interpolation of weighted spaces of differentiable functions on Rd, Ann. Mat. Pura Appl., 132 (1982), 189-214. [10] A. Miyachi, Estimates for pseudo-differential operators of class S0,0, to appear in Math. Nachr. [11] T. Muramatu, Estimates for the norm of pseudo-differential operators by means of Besov spaces, Lecture Notes in Math., 1256 (1987), 330-349. [12] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Math. Dept. Duke Univ., Durham, 1976. [13] M. Sugimoto, Lp-boundedness of pseudo-differential operators satisfying Besov estimates II, to appear in J. Fac. Sci. Univ. Tokyo [14] H. Triebel, Theory of Function Spaces, Monogr. in Math., 78, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983.