訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) M. P. Cartier, Démonstration algébrique de la formule de Hausdorff, Bull. Soc. Math. France, 84 (1956), 241-249. 2) O. Gabber and V. G. Kac, On defining relations of certain infinite-dimensional Lie algebras, Bull. Amer. Math. Soc., 5 (1981), 185-189. 3) H. Garland, The arithmetic theory of loop groups, Publ. Math. IHES, 52 (1980), 5-136. 4) V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR, Ser. Mat. Tom 32 (1968), 1923-1967. English translation: Math. USSR-Izvestija, 2 (1968), 1271-1311. 5) V. G. Kac, Infinite dimensional Lie algebras, Birkhäuser, Boston, 1983. 6) V. G. Kac and D. H. Peterson, Unitary structure in representations of infinite-dimensional groups and a convexity theorem, Invent. Math., 76 (1984), 1-14. 7) O. Mathieu, Sur la construction de groupes associés aux algèbres de Kac-Moody, C. R. Acad. Sci. Paris, 299 (1984), 161-164. 8) R. V. Moody, A new class of Lie algebras, J. Algebra, 10 (1968), 221-230. 9) D. H. Peterson and V. G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. USA, 80 (1983), 1778-1782. 10) M. J. Tits, Annuaire du collège de France, 1980-1981, pp. 75-87.
Right : [1] M. P. Cartier, Démonstration algébrique de la formule de Hausdorff, Bull. Soc. Math. France, 84 (1956), 241-249. [2] O. Gabber and V. G. Kac, On defining relations of certain infinite-dimensional Lie algebras, Bull. Amer. Math. Soc., 5 (1981), 185-189. [3] H. Garland, The arithmetic theory of loop groups, Publ. Math. IHES, 52 (1980), 5-136. [4] V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR, Ser. Mat. Tom 32 (1968), 1923-1967. English translation: Math. USSR-Izvestija, 2 (1968), 1271-1311. [5] V. G. Kac, Infinite dimensional Lie algebras, Birkhäuser, Boston, 1983. [6] V. G. Kac and D. H. Peterson, Unitary structure in representations of infinite-dimensional groups and a convexity theorem, Invent. Math., 76 (1984), 1-14. [7] O. Mathieu, Sur la construction de groupes associés aux algèbres de Kac-Moody, C. R. Acad. Sci. Paris, 299 (1984), 161-164. [8] R. V. Moody, A new class of Lie algebras, J. Algebra, 10 (1968), 221-230. [9] D. H. Peterson and V. G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. USA, 80 (1983), 1778-1782. [10] M. J. Tits, Annuaire du collège de France, 1980-1981, pp. 75-87.