1) Katholieke Universiteit Leuven Departement Wiskunde
2) Katholieke Universiteit Leuven Departement Wiskunde
訂正後 :
1) Katholieke Universiteit Leuven Departement Wiskunde
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : DNV) F. Dillen, K. Nomizu and L. Vrancken, Conjugate connections and Radon's theorem in affine differential geometry, Monatsh. Math., 109 (1990), 221-235. DV1) F. Dillen and L. Vrancken, Homogeneous affine hypersurfaces with rank one shape operators, Math. Z., 365 (1992), 212 (1993), 61-72. DV2) F. Dillen and L. Vrancken, Calabi-type composition of affine spheres, Diff. Geom. and Appl., to appear. N1) K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tohoku Math. J., 20 (1968), 40-59. N2) K. Nomizu, Introduction to affine differential geometry, Part I, MPI/88-38, Bonn, 1988, Revised: Department of Mathematics, Brown University, 1989. NP) K. Nomizu and U. Pinkall, Cubic form theorems for affine immersions, Res. Math., 13 (1988), 338-362. NS) K. Nomizu and T. Sasaki, A new model of unimodular-affinely homogeneous surfaces, Manuscripta Math., 73 (1991), 39-44. S) T. Sasaki, Hyperbolic affine hyperspheres, Nagoya Math. J., 77 (1980), 107-123. V) L. Vrancken, Affine surfaces with constant affine curvatures, Geom. Dedicata, 33 (1990), 177-194.
Right : [DNV] F. Dillen, K. Nomizu and L. Vrancken, Conjugate connections and Radon's theorem in affine differential geometry, Monatsh. Math., 109 (1990), 221-235. [DV1] F. Dillen and L. Vrancken, Homogeneous affine hypersurfaces with rank one shape operators, Math. Z., 365 (1992), 212 (1993), 61-72. [DV2] F. Dillen and L. Vrancken, Calabi-type composition of affine spheres, Diff. Geom. and Appl., to appear. [N1] K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J., 20 (1968), 40-59. [N2] K. Nomizu, Introduction to affine differential geometry, Part I, MPI/88-38, Bonn, 1988, Revised: Department of Mathematics, Brown University, 1989. [NP] K. Nomizu and U. Pinkall, Cubic form theorems for affine immersions, Res. Math., 13 (1988), 338-362. [NS] K. Nomizu and T. Sasaki, A new model of unimodular-affinely homogeneous surfaces, Manuscripta Math., 73 (1991), 39-44. [S] T. Sasaki, Hyperbolic affine hyperspheres, Nagoya Math. J., 77 (1980), 107-123. [V] L. Vrancken, Affine surfaces with constant affine curvatures, Geom. Dedicata, 33 (1990), 177-194.