Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
Detergents and Interface Science
Polymerizable Anionic Gemini Surfactants: Physicochemical Properties in Aqueous Solution and Polymerization Behavior
Kenichi SakaiMiyuki WadaWataru MatsudaKoji TsuchiyaYuichiro TakamatsuKazuyuki TsuboneTakeshi EndoKanjiro TorigoeHideki SakaiMasahiko Abe
Author information
JOURNAL FREE ACCESS

2009 Volume 58 Issue 8 Pages 403-413

Details
Abstract
A novel polymerizable anionic gemini surfactant has been synthesized and the physicochemical properties in aqueous solution have been studied with a combination of various analytical techniques. The surfactant (PA12-2-12) contains two anionic monomeric parts linked with an ethylene spacer and polymerizable methacryloxy groups covalently bound to the terminal of the hydrocarbon chains. The static surface tension data suggest that, when compared with a conventional (non-polymerizable) anionic gemini surfactant (A12-2-12), (i) the interfacial adsorption of PA12-2-12 occurs more effectively from low surfactant concentrations, whereas (ii) a weak interaction of the polymerizable terminal groups with water molecules (and/or the steric hindrance of the polymerizable groups) plays a significant role in the subsequent molecular packing at the air/aqueous solution interface. The latter effect (as well as the electrostatic repulsion between the anionic headgroups) results in a relatively less packed monolayer film, overcoming the strong intermolecular attractive interaction that is frequently seen for gemini surfactant systems. In the region of low added electrolyte concentrations, PA12-2-12 spontaneously forms spherical micelles in aqueous solution, which is confirmed with the Corrin-Harkins analysis (critical micelle concentration (cmc) vs. total counter-ion concentration) and cryogenic transmission electron microscopy (cryo-TEM). The spherical micelles have been polymerized under UV light irradiation in the absence of added electrolytes. Cryo-TEM measurements confirm that no significant change in the original micelle morphology occurs during the polymerization. This offers a possibility that the polymerizable anionic gemini surfactant should be useful as nano-structural organic templates and/or interfacial stabilizers in aqueous solution.
Content from these authors
© 2009 by Japan Oil Chemists' Society
Previous article Next article
feedback
Top