Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
Detergents, Surfactants, Interface and Colloid
Extension of “Interfacial Adsorption Denaturation” Behavior Interpretation Based on Gibbs Monolayer Formation by Biomolecules
Yusuke KimuraYuki MashiyamaHaruka MaruyamaAtsuhiro Fujimori
Author information
JOURNAL FREE ACCESS

2021 Volume 70 Issue 3 Pages 349-362

Details
Abstract

Using glucose oxidase and salmon testis-derived DNA molecules, we sought to extend the recently proposed idea of interfacial adsorption denaturation. The surface pressure-time (π-t) isotherm of the glucose oxidase Gibbs monolayer exhibited a rapid increase in surface pressure and a relatively prompt transition to a liquid condensed film. The appearance of this rapid liquid expansion phase occurred much earlier than that previously identified for lysozyme, trypsin, cytochrome C, and luciferase. This experimental finding was linked to the number of hydrophobic residues in the constituent unit, and the number of hydrophobic residues in glucose oxidase was the highest among these biomolecules. On the other hand, DNA molecules do not have such hydrophobic groups, or present a positive surface on the π-t curve. However, interfacial adsorption occurred, and the existence of molecules at the air/water interface was confirmed, even in the two-dimensional gas phase state. Furthermore, it was confirmed that an increase in surface pressure was detected during the formation of a mixed film of DNA molecules and biomolecules, forming a stable Gibbs monolayer. This mimic the behavior of mixed monolayer formation with matrix molecules in Langmuir monolayers. Moreover, it was clarified that the interfacial adsorption denaturation behavior changed when pH dependence was evaluated considering the isoelectric point of the biomolecular group.

graphical abstract Fullsize Image
Content from these authors
© 2021 by Japan Oil Chemists' Society
Previous article Next article
feedback
Top