Journal of Prosthodontic Research
Online ISSN : 1883-9207
Print ISSN : 1883-1958
ISSN-L : 1883-1958

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Physical and biological implications of accelerated aging on stereolithographic additive-manufactured zirconia for dental implant abutment
Xin TanYuwei ZhaoYuqing LuPing YuZiyu MeiHaiyang Yu
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: JPR_D_21_00240

この記事には本公開記事があります。
詳細
抄録

Purpose: This study aimed to comparatively investigate the effects of accelerated aging on the physical and biological features of zirconia manufactured by digital light processing (DLP) and conventional subtractive manufacturing (SM) with similar composition.

Methods: Both the DLP- and SM-fabricated zirconia samples (7 mm × 7.5 mm × 1.5 mm) were grouped according to aging (134 °C, 0.2 MPa, 100% humidity) times, including 0 h, 5 h, and 10 h. Phase assemblage and surface topography of zirconia manufactured by different technologies were evaluated before and after aging. The biological effects of zirconia on human gingival fibroblast (HGF) cell events, including cell viability, proliferation, morphology and adhesion, were also evaluated by live/dead viability assay, cck-8 assay, scanning electron microscopy and confocal laser scanning microscopy respectively.

Results: The DLP-fabricated zirconia showed a higher initial cubic phase content and rate of phase transformation than the SM-fabricated zirconia. Among the different aging time-based groups, the 5 h-aged group exhibited significantly lower sub-micron scale surface roughness compared with the other groups. Aging did not significantly alter cellular behavior in any zirconia type, except for minor changes in adhesive cell numbers recorded in an aging time/culturing time-dependent manner. In addition to small differences in cell alignment patterns and overall cell morphology, the two zirconia types presented comparable biological performance before and after aging.

Conclusion: Although the microstructure and surface characteristics of DLP-fabricated zirconia can be affected by autoclave aging, this newly manufactured zirconia is likely to maintain desirable long-term biocompatibility as an implant abutment material.

著者関連情報
© 2021 Japan Prosthodontic Society

This is an open-access article distributed under the terms of Creative Commons Attribution-NonCommercial License 4.0 (CC BYNC 4.0), which allows users to distribute and copy the material in any format as long as credit is given to the Japan Prosthodontic Society. It should be noted however, that the material cannot be used for commercial purposes.
https://creativecommons.org/licenses/by-nc/4.0/
feedback
Top