Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Tracking and Visualizing Signs of Degradation for Early Failure Prediction of Rolling Bearings
Sana TalmoudiTetsuya KanadaYasuhisa Hirata
著者情報
ジャーナル オープンアクセス

2021 年 33 巻 3 号 p. 629-642

詳細
抄録

Predictive maintenance, which means detection of failure ahead of time, is one of the pillars of Industry 4.0. An effective method for this technique is to track early signs of degradation before failure occurs. This paper presents an innovative failure predictive scheme for machines. The proposed scheme combines the use of the full spectrum of vibration data from the machines and a data visualization technology. This scheme requires no training data and can be started quickly after installation. First, we proposed to use the full spectrum (as high-dimensional data vectors) with no cropping and no complex feature extraction and to visualize the data behavior by mapping the high-dimensional vectors into a two-dimensional (2D) map. This ensures simplicity of the process and less possibility of overlooking important information as well as provide a human-friendly and human-understandable output. Second, we developed a real-time data tracker that can predict failure at an appropriate time with sufficient allowance for maintenance by plotting real-time frequency spectrum data of the target machine on a 2D map created from normal data. Finally, we verified our proposal using vibration data of bearings from real-world test-to-failure measurements obtained from the IMS dataset.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
前の記事 次の記事
feedback
Top