人工知能学会第二種研究会資料
Online ISSN : 2436-5556
深層学習に有用な隠れ素子数の自動決定法D-DALPの提案
山田 航佑大澤 正彦今井 倫太
著者情報
研究報告書・技術報告書 フリー

2017 年 2017 巻 AGI-005 号 p. 03-

詳細
抄録

Although deep learning is an effective method to conduct a machine learning, there is no definite answer on how to initialize the hyper parameters. In this paper, we propose an extension of DALP algorithm, an algorithm to automatically tune the number of hidden units for RBM, Double DALP (D- DALP). D-DALP is an algorithm that automatically tunes the number of hidden units that is effective for deep learning by applying DALP twice to the same data set. In the experiment, it is shown that RBM initialized with D-DALP has a higher identification accuracy when compared to RBM initialized with DALP in a deep learning setting.

著者関連情報
© 2017 著作者
前の記事 次の記事
feedback
Top