日本計算工学会論文集
Online ISSN : 1347-8826
ISSN-L : 1344-9443
離散最適化のための大域的交叉メカニズムを持つ分散遺伝的アルゴリズム
三木 光範廣安 知之勝崎 俊樹水田 伯典
著者情報
ジャーナル フリー

2004 年 2004 巻 p. 20040001

詳細
抄録
This paper proposes a new method of genetic algorithms (GAs) for discrete optimization problems. For discrete optimization problems, the performance of Distributed GAs (DGAs) are not so good. We propose a new method of increasing the performance of DGAs for discrete optimization problems. The features of the proposed method, Global Crossover based DGA (GCDGA), are multiple crossover operations applied to the elite individuals and DGA without migration. We apply GCDGA to job-shop scheduling problems (JSPs). The experiments on JSPs showed that GCDGA has a better performance than the conventional GAs, and GCDGA provides an efficient distributed scheme in GAs for discrete optimization problems.
著者関連情報
© 2004 The Japan Society For Computational Engineering and Science
次の記事
feedback
Top