Dynamics & Design Conference
Online ISSN : 2424-2993
セッションID: 424
会議情報
424 ラグランジュ力学の幾何学的方法について : 非ホロノミック系の定式化
吉村 浩明沼生 泰伸
著者情報
会議録・要旨集 フリー

詳細
抄録
The paper illustrates a geometric approach to Lagrangian mechanics for nonholonomic constrained systems with a nonconservative force field. We first demonstrate a regular Lagrangian system for a conservative mechanical system in the context of variational principle of Hamilton and also that a nonholonomic mechanical system can be formulated on the tangent bundle of a configuration manifold by using Lagrange multipliers in the context of the induced symplectic structure. Then, we illustrate the case with a nonconservative force field and we finally show an intrinsic formulation of a nonconservative mechanical system with nonholonomic constraints by Lagrange-d'Alembert principle.
著者関連情報
© 2005 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top