ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-P03
会議情報
1A1-P03 強化学習によるヒトと自律ロボット群の協調行動の獲得 : 環境変化に対する頑健性の検証(進化・学習とロボティクス)
野村 聡一郎保田 俊行大倉 和博
著者情報
会議録・要旨集 フリー

詳細
抄録
We have proposed technique, named Bayesian-discrimination-function-based Reinforcement Learning (BRL). BRL can segmentalize continuous state and action spaces. Because of this, we succeeded acquisition of cooperative behavior in Multi-Robot System under a real environment with noise and uncertainty. In that experiment, robots didn't understand who their partners are. So in this paper, we aim to acquisition of cooperative behavior between robots and a human by BRL. A task is that robots keep a pallet upright and lift up it with a human. We examine the robustness of BRL through the change of an environment by shift to another human.
著者関連情報
© 2011 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top