ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-K03
会議情報
1A1-K03 多目的関数を用いたジョブショップスケジューリング問題の最適化(進化・学習とロボティクス)
島倉 渉渡辺 美知子鈴木 育男岩館 健司
著者情報
会議録・要旨集 フリー

詳細
抄録
The Job-shop Scheduling Problem is a classical, but yet modern problem. Because it belongs to the NP-hard problem and it is almost impossible to find out the exact solution, many heuristic methods have been proposed. Recently, Genetic Algorithm (GA), Local Clustering Organization (LCO) and so on have been proposed as a powerful tool to solve the problem. The optimal schedule becomes very important from a viewpoint of cost reduction in the manufacturing industry. This study optimizes the job-shop scheduling with multiple purpose functions by using evolutional computation. Numerical experiments verify that the evolutional computation obtains (quasi-) optimal schedule with multiple purpose functions.
著者関連情報
© 2014 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top