ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-K05
会議情報
1A1-K05 フラクタル次元解析を用いた強化学習の収束推定法の開発(進化・学習とロボティクス)
村田 雄太河野 仁神村 明哉富田 康治鈴木 剛
著者情報
会議録・要旨集 フリー

詳細
抄録
This paper describes a convergence estimation method and learning termination method for reinforcement learning in dynamic environment. In recent years, multi-robot systems utilizing reinforcement learning have been developing in real-world situations. However, conventional learning methods take a considerable amount of time to reach convergence. Furthermore, conventional learning processes are often inefficient because robot continues reinforcement learning even if learning converges. In response to this problem, we propose a Knowledge Co-creation Framework (KCF) for multi-robot systems, whose efficient implementation requires an autonomous convergence estimation method and learning termination method for reinforcement learning. Therefore,on basis of the assumption that learning curves exhibit fractality, we propose the convergence estimation method and the learning termination method utilizing a fractal dimensional analysis. Furthermore, we confirmed that the proposed method determines the learning convergence and terminates the reinforcement learning by conducting a computer simulation.
著者関連情報
© 2014 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top