ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-L06
会議情報
1A1-L06 人からの報酬と罰の逐次的な教示を利用するロボット学習モデル(進化・学習とロボティクス)
田中 爽太廣川 暢一鈴木 健嗣
著者情報
会議録・要旨集 フリー

詳細
抄録
Reinforcement Learning is a machine learning method to acquire a series of actions that maximizes a cumulative reward. However, it is difficult to optimize interaction between human and robot in a daily living space because there is no definite evaluation standard about undesirable actions. In this study, we propose a novel learning model using a successive reward and punishment based on human subjective evaluation. In this method, we developed human can restrain undesirable actions by giving punishment evaluation. We developed a dog-like robot to verify the proposed method and demonstrated its performance through the experiment.
著者関連情報
© 2014 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top