ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P2-E02
会議情報
1P2-E02 余事象分布を導入した混合正規分布に基づく未学習クラス推定ニューラルネット(福祉ロボティクス・メカトロニクス(3))
青木 貴裕島 圭介
著者情報
会議録・要旨集 フリー

詳細
抄録
This paper proposes a novel neural network enabling estimation of a posteriori probability for learned and unlearned classes. By defining probability density functions of unlearned classes in a Gaussian mixture model, undefined classes can be discriminated via network training using given learning samples. This method can be applied to various pattern discrimination problems such as electromyogram (EMG) classification. In the experiments reported here, the classification ability of the proposed network was demonstrated using artificial data and EMG patterns. The results showed that the method provides a high level of performance for learned and unlearned class discrimination.
著者関連情報
© 2014 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top