ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P2-B05
会議情報

NLOS マルチパス信号の機械学習による都市環境における自己位置推定の高精度化
中野 裕介鈴木 太郎天野 嘉春
著者情報
会議録・要旨集 フリー

詳細
抄録

This paper describes a method of non-line-of-sight (NLOS) multipath detection by using machine learning of signal correlation value of grobal positioning system (GPS) for precise positioning in urban environments. GPS is widely used for estimating self-position in many scenes. However, in urban canyons, GPS positioning accuracy is deteriorated due to NLOS multipath signals. Because of obstacles between NLOS satellites and a GPS antenna, GPS signals omitted from GPS satellites are reflected or diffracted by obstacles. We propose the method to detect NLOS multipath signals using support vector machine (SVM) based on a machine learning of GPS signal correlation values. GPS signal correlation values can be obtained by using a software receiver. We extract the features of NLOS multipath signals from signal correlation value and create the NLOS multipath detection program by machine learning of its feature. As the result of the evaluation, the proposed method is effective to detect NLOS multipath signal.

著者関連情報
© 2017 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top