ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P1-D08
会議情報

超音波画像における深層学習を用いた肝硬変の自動診断
*草原 健太小泉 憲裕今泉 飛翔齋藤 僚介矢ヶ崎 詩穂松本 直樹小川 眞広
著者情報
会議録・要旨集 フリー

詳細
抄録

In recent years, the development of medical image diagnostic devices has made it possible to perform diagnosis using a large amount of medical data, but the increased burden on physicians has become a problem. Therefore, in this study, we applied deep learning to the ultrasound B-mode images of the liver to diagnose the presence or absence of diseases using a computer. The estimation of the liver parenchymal region in the ultrasonic image realized the Pixel accuracy of 0.88 and the conformance rate of 0.84. The classification of liver cirrhosis using ROI resulted in 0.88 classification results. According to the results of the study, liver cirrhosis is classified from a single image, but estimation from moving images is necessary for automation, and it is necessary to improve the selection method of ROI in order to improve accuracy.

著者関連情報
© 2020 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top