ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-N02
会議情報

人間・ロボット協調系のためのベイズ最適化を用いたダンピング場パラメータの学習
*トラン ドク リエム山脇 輔藤原 浩幸八島 真人
著者情報
会議録・要旨集 認証あり

詳細
抄録

In impedance control, impedance parameters can be adjusted to improve the performance of human-robot collaboration. This paper proposes a new method to adapt the damping parameter based on the potential field method widely used in path planning. First, a damping field is generated to modify the damping value based on the current end-effector position. Bayesian optimization is then used to learn the parameters of the constructed damping field. Finally, experiments are conducted with a 2-DOF planar robot arm in a point-to-point collaborative motion, and results show that the proposed method help improve the performance of tasks that require high accuracy.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top