熱工学コンファレンス講演論文集
Online ISSN : 2424-290X
セッションID: F22
会議情報

疑似気泡画像自動生成によるFaster R-CNNベースの気泡検出アルカリ水電解への応用
*遠山 航平金本 凌平山 慶汰荒木 拓人三角 隆太
著者情報
会議録・要旨集 認証あり

詳細
抄録

Faster R-CNN method to automatically detect hydrogen bubbles within alkaline water electrolyzer was developed. This method includes an algorithm to automatically draw a pseudo-hydrogen bubble image based on actual hydrogen bubble images for training the CNN. This approach resolves the challenge of training models with a large amount of annotation dataset to achieve high-precision inference with CNN. With this method, it is possible to collect the amount of data needed to train the model by simply cutting out 12 bubbles. The method required approximately 0.1 s/image for bubble detection and F1 score exceeds 0.841 for all test images.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top