主催: 一般社団法人 交通工学研究会
会議名: 第42回交通工学研究発表会
回次: 42
開催地: 早稲田大学(東京都)・オンライン同時配信
開催日: 2022/08/09 - 2022/08/10
p. 555-562
一般道の渋滞は依然として解決すべき重要課題の一つとなっている.近年の ICT の発展により様々なビッグデータが蓄積されているが,その利活用は十分とは言い難い.そこで本研究では,ETC2.0 プローブデータを用いて一般道の主なボトルネックである信号交差点に着目して交通状況を整理し,国土数値情報等のその他ビッグデータを活用して道路構造・土地利用等に関するデータを整理・統合利用することで,一般道の渋滞発生要因を定量的に分析する.XGBoost を用いた機械学習モデルを構築し,SHAP による解釈を試みた結果,時間帯交通量等が渋滞発生に,左折車線延長等が渋滞抑制に影響することを確認した.また,個別の信号交差点に着目した渋滞対策の効果予測より,右折車線の延伸による渋滞抑制への影響を確認した.