前橋工科大学研究紀要
Online ISSN : 2433-5673
Print ISSN : 1343-8867
接合によりグルコアミラーゼ遺伝子STA1が発現したビール酵母の育種
尾形 智夫
著者情報
研究報告書・技術報告書 オープンアクセス

2018 年 21 巻 p. 53-56

詳細
抄録
Standard brewing yeast cannot utilize larger oligomers or dextrins, which represent about 25% of wort sugars. A brewing yeast strain that could ferment these additional sugars to ethanol would be useful for producing low-carbohydrate diabetic or low-calorie beers. In this study, a brewing yeast strain that secretes glucoamylase was constructed by mating. The resulting Saccharomyces cerevisiae 278/113371 yeast was MATa/ diploid, but expressed the glucoamylase gene STA1. At the early phase of the fermentation test in malt extract medium, the fermentation rate of the diploid STA1 strain was slower than those of both the parent strain S. cerevisiae MAFF113371 and the reference strain bottom-fermenting yeast Weihenstephan 34/70. At the later phase of the fermentation test, however, the fermentation rate of the STA1 yeast strain was faster than those of the other strains. The concentration of ethanol in the culture supernatant of the STA1 yeast strain after the fermentation test was higher than those of the others. The concentration of all maltooligosaccharides in the culture supernatant of the STA1 yeast strain after the fermentation test was lower than those of the parent and reference strains, whereas the concentrations of flavor compounds in the culture supernatant were higher. These effects are due to the glucoamylase secreted by the constructed STA1 yeast strain. In summary, a glucoamylase-secreting diploid yeast has been constructed by mating that will be useful for producing novel types of beer owing to its different fermentation pattern and concentrations of ethanol and flavor compounds.
著者関連情報
© 2018 前橋工科大学
前の記事 次の記事
feedback
Top