Mechanical Engineering Journal
Online ISSN : 2187-9745
ISSN-L : 2187-9745

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Parallel homogenization analysis of FW-CFRP for high-pressure hydrogen tanks considering fiber waviness
Naoki MORITATomoya TAKAHASHITetsuya MATSUDAMasahito UEDATomohiro YOKOZEKIWataru IWASE
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 24-00013

この記事には本公開記事があります。
詳細
抄録

In this study, a parallel three-scale homogenization analysis simulator that accounts for macro-, meso-, and micro-scale structures was developed for the carbon-fiber-reinforced plastics (CFRPs) used in high-pressure hydrogen storage vessels manufactured using the filament winding (FW) method. The developed simulator enables detailed analysis that accounts for fiber irregularities in the fiber bundle tapes of FW-CFRP. Because numerical simulations that consider fiber irregularities increase computational time and memory usage, we developed a parallel computation system for three-scale homogenization using the domain decomposition method. Numerical examples using large-scale computers verified that our parallel three-scale homogenization analysis has parallel computing performance close to the ideal acceleration ratio. We then investigated the effects of fiber waviness in fiber bundle tapes on the macro-scale properties of FW–CFRP by considering waviness as an initial irregularity in the carbon fiber arrangement. Our analysis of fiber irregularities revealed that fiber waviness has a significant effect on macroscopic stiffness and stress. Within the scope of this study, the macroscopic stiffness and stress were reduced by 40% and 57%, respectively, compared to the results without irregularities.

著者関連情報
© 2024 The Japan Society of Mechanical Engineers

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top