人工知能学会全国大会論文集
Online ISSN : 2758-7347
第36回 (2022)
セッションID: 3N4-GS-10-01
会議情報

素粒子物理実験における多段深層学習モデルの学習
*齊藤 真彦森永 真央ガングリ サンメイ岸本 巴田中 純一
著者情報
会議録・要旨集 フリー

詳細
抄録

大規模な素粒子物理実験では、取得した実験データを統計解析するまでに多段階のデータ加工のステップが必要であることが多い。近年はそれぞれのステップに深層学習が導入されてきており、データ解析技術の向上に貢献している。このようなとき、多段に連結された複数の深層学習モデルを同時学習することで最後段ステップ(統計解析)の性能向上が期待されるが、その学習方法は確立していない。 本講演では、このような状況下におけるモデルの接続手法、及び同時学習の方法を議論する。特に、(1) それぞれのステップに対応する誤差関数をMLPを経由して伝搬させることにより、最後段ステップの性能劣化が緩和すること、(2) 複数の誤差関数から構成される深層学習モデルをマルチタスク学習の手法を適用することで効果的に学習できること、を示す。

著者関連情報
© 2022 人工知能学会
前の記事 次の記事
feedback
Top