人工知能学会全国大会論文集
Online ISSN : 2758-7347
37th (2023)
セッションID: 1U5-IS-2b-05
会議情報

Predicting CTR of Responsive Search Ads Using Handcrafted Features
*Melvin Charles Ortua DY
著者情報
会議録・要旨集 フリー

詳細
抄録

In this paper, I demonstrate that a reasonably sized set of handcrafted features (866, applied to titles and description texts separately) plus encoded metadata can be used to predict the click-through rates of the dynamic Responsive Search Ad format, exceeding the performance of some fine-tuned Transformer-based large language models at a fraction of the training cost.

著者関連情報
© 2023 The Japanese Society for Artificial Intelligence
前の記事 次の記事
feedback
Top