主催: The Japanese Society for Artificial Intelligence
会議名: 2023年度人工知能学会全国大会(第37回)
回次: 37
開催地: 熊本城ホール+オンライン
開催日: 2023/06/06 - 2023/06/09
In this paper, I demonstrate that a reasonably sized set of handcrafted features (866, applied to titles and description texts separately) plus encoded metadata can be used to predict the click-through rates of the dynamic Responsive Search Ad format, exceeding the performance of some fine-tuned Transformer-based large language models at a fraction of the training cost.