計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
3D Faster R-CNNとレーザスキャンとの組み合わせによる特定物体の頑健な距離推定
八谷 大岳射手矢 和真中村 恭之
著者情報
ジャーナル フリー

2019 年 55 巻 1 号 p. 42-50

詳細
抄録

Measuring the distance of a specific object accurately is a challenging task. Recently, in mobile robot community, there are several works combining an image-based object detection method and the distance measurement using laser scanner to achieve such challenge. However, the performance of existing methods tend to degrade due to the influence of occlusion and walls behind the target object. To tackle the vulnerability in the existing methods, in this paper, we propose Belief Weighted Max Cluster Average Detection (BWMCAD) method which utilizes the result of 3D Faster R-CNN as the belief of laser scan data and clusters the belief weighted data to extract the distance to the target object. We demonstrate its effectiveness through distance measurement tasks using Tsukuba challenge 2017 data and in-house data in comparison with existing methods.

著者関連情報
© 2019 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top