Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications
Online ISSN : 2188-4749
Print ISSN : 2188-4730
第31回ISCIE「確率システム理論と応用」国際シンポジウム(1999年11月, 横浜)
Modeling of Mixtures of Principal Component Analysis Model with Genetic Algorithm
Masahiro Tanaka
著者情報
ジャーナル フリー

2000 年 2000 巻 p. 157-162

詳細
抄録
Probabilistic principal component analysis is a multivariate Gaussian model where the principal components are used. The mixture of such kernel functions can be a general tool for expressing probability density functions. However, it has not been extensively discussed how to decide the number of kernels nor where to fix the initial points. In this paper we propose to use the genetic algorithm to overcome those problems.
著者関連情報
© 2000 ISCIE Symposium on Stochastic Systems Theory and Its Applications
前の記事 次の記事
feedback
Top