抄録
The aim of this study is to develop a desiccant system using Wakkanai siliceous shale. A honeycombed desiccant rotor containing this shale's powder and chlorides was made and evaluated. However a specific surface area and a pore volume were smaller than a silica-gel rotor or a zeolite rotor, the maximum amount of water adsorption was twice as other rotors. We have verified the function of this desiccant rotor concerning adsorption and desorption of moisture from the draft experiments. The rotor containing the shale could adsorb moisture stably in the cyclic test, and be regenerated by 40°C air under this experimental condition. This means that the exhaust heat from the heat pump can be used for regenerating rotor. Furthermore, the numerical simulation was carried out on the assumption that this rotor was used for a dehumidification for the residential air conditioning in Tokyo. This rotor could adsorb 37.1% moisture of the required dehumidification amount for the hottest day in 2008. When we employed a pre-cooling before dehumidification, the amount of adsorption increased to 66.2%.