IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Signal Design and Its Applications in Communications
A Lower Bound on the Second-Order Nonlinearity of the Generalized Maiorana-McFarland Boolean Functions
Qi GAODeng TANG
Author information
JOURNAL RESTRICTED ACCESS

2018 Volume E101.A Issue 12 Pages 2397-2401

Details
Abstract

Boolean functions used in stream ciphers and block ciphers should have high second-order nonlinearity to resist several known attacks and some potential attacks which may exist but are not yet efficient and might be improved in the future. The second-order nonlinearity of Boolean functions also plays an important role in coding theory, since its maximal value equals the covering radius of the second-order Reed-Muller code. But it is an extremely hard task to calculate and even to bound the second-order nonlinearity of Boolean functions. In this paper, we present a lower bound on the second-order nonlinearity of the generalized Maiorana-McFarland Boolean functions. As applications of our bound, we provide more simpler and direct proofs for two known lower bounds on the second-order nonlinearity of functions in the class of Maiorana-McFarland bent functions. We also derive a lower bound on the second-order nonlinearity of the functions which were conjectured bent by Canteaut and whose bentness was proved by Leander, by further employing our bound.

Content from these authors
© 2018 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top