IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Cryptography and Information Security
Private Decision Tree Evaluation by a Single Untrusted Server for Machine Learnig as a Service
Yoshifumi SAITOWakaha OGATA
Author information
JOURNAL RESTRICTED ACCESS

2022 Volume E105.A Issue 3 Pages 203-213

Details
Abstract

In this paper, we propose the first private decision tree evaluation (PDTE) schemes which are suitable for use in Machine Learning as a Service (MLaaS) scenarios. In our schemes, a user and a model owner send the ciphertexts of a sample and a decision tree model, respectively, and a single server classifies the sample without knowing the sample nor the decision tree. Although many PDTE schemes have been proposed so far, most of them require to reveal the decision tree to the server. This is undesirable because the classification model is the intellectual property of the model owner, and/or it may include sensitive information used to train the model, and therefore the model also should be hidden from the server. In other PDTE schemes, multiple servers jointly conduct the classification process and the decision tree is kept secret from the servers under the assumption they do not collude. Unfortunately, this assumption may not hold because MLaaS is usually provided by a single company. In contrast, our schemes do not have such problems. In principle, fully homomorphic encryption allows us to classify an encrypted sample based on an encrypted decision tree, and in fact, the existing non-interactive PDTE scheme can be modified so that the server classifies only handling ciphertexts. However, the resulting scheme is less efficient than ours. We also show the experimental results for our schemes.

Content from these authors
© 2022 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top