IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Regular Section
New Binary Sequences Derived from Euler Quotients Modulo pq and Their Generalizations
Jiang MAJun ZHANGYanguo JIAXiumin SHEN
Author information
JOURNAL FREE ACCESS

2023 Volume E106.A Issue 4 Pages 657-664

Details
Abstract

Pseudorandom sequences with large linear complexity can resist the linear attack. The trace representation plays an important role in analysis and design of pseudorandom sequences. In this letter, we present the construction of a family of new binary sequences derived from Euler quotients modulo pq, where pq is a product of two primes and p divides q-1. Firstly, the linear complexity of the sequences are investigated. It is proved that the sequences have larger linear complexity and can resist the attack of Berlekamp-Massey algorithm. Then, we give the trace representation of the proposed sequences by determining the corresponding defining pair. Moreover, we generalize the result to the Euler quotients modulo pmqn with mn. Results indicate that the generalized sequences still have high linear complexity. We also give the trace representation of the generalized sequences by determining the corresponding defining pair. The result will be helpful for the implementation and the pseudorandom properties analysis of the sequences.

Content from these authors
© 2023 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top