IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on VLSI Design and CAD Algorithms
Multi-Operand Adder Synthesis Targeting FPGAs
Taeko MATSUNAGAShinji KIMURAYusuke MATSUNAGA
Author information
JOURNALS RESTRICTED ACCESS

2011 Volume E94.A Issue 12 Pages 2579-2586

Details
Abstract

Multi-operand adders, which calculates the summation of more than two operands, usually consist of compressor trees which reduce the number of operands to two without any carry propagation, and a carry-propagate adder for the two operands in ASIC implementation. The former part is usually realized using full adders or (3;2) counters like Wallace-trees in ASIC, while adder trees or dedicated hardware are used in FPGA. In this paper, an approach to realize compression trees on FPGAs is proposed. In case of FPGA with m-input LUT, any counters with up to m inputs can be realized with one LUT per an output. Our approach utilizes generalized parallel counters (GPCs) with up to m inputs and synthesizes high-performance compressor trees by setting some intermediate height limits in the compression process like Dadda's multipliers. Experimental results show that the number of GPCs are reduced by up to 22% compared to the existing heuristic. Its effectivity on reduction of delay is also shown against existing approaches on Altera's Stratix III.

Information related to the author
© 2011 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top