Abstract
A twin dominating set of a digraph D is a subset S of vertices if, for every vertex u ∉ S, there are vertices x,y ∈ S such that ux and yu are arcs of D. A digraph D is round if the vertices can be labeled as v0,v1,...,vn-1 so that, for each vertex vi, the out-neighbors of vi appear consecutively following vi and the in-neighbors of vi appear consecutively preceding vi. In this paper, we give polynomial time algorithms for finding a minimum weight twin dominating set and a minimum weight total twin dominating set for a weighted round digraph. Then we show that there is a polynomial time algorithm for deciding whether a locally semicomplete digraph has an independent twin dominating set. The class of locally semicomplete digraphs contains round digraphs as a special case.