IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Discrete Mathematics and Its Applications
Longest Fault-Free Cycles in Folded Hypercubes with Conditional Faulty Elements
Wen-Yin HUANGJia-Jie LIUJou-Ming CHANGRo-Yu WU
Author information
JOURNAL RESTRICTED ACCESS

2014 Volume E97.A Issue 6 Pages 1187-1191

Details
Abstract
An n-dimensional folded hypercube, denoted by FQn, is an enhanced n-dimensional hypercube with one extra link between nodes that have the furthest Hamming distance. Let FFv (respectively, FFe) denote the set of faulty nodes (respectively, faulty links) in FQn. Under the assumption that every fault-free node in FQn is incident to at least two fault-free links, Hsieh et al. (Inform. Process. Lett. 110 (2009) pp.41-53) showed that if |FFv|+|FFe| ≤ 2n-4 for n ≥ 3, then FQn-FFv-FFe contains a fault-free cycle of length at least 2n-2|FFv|. In this paper, we show that, under the same conditional fault model, FQn with n ≥ 5 can tolerate more faulty elements and provides the same lower bound of the length of a longest fault-free cycle, i.e., FQn-FFv-FFe contains a fault-free cycle of length at least 2n-2|FFv| if |FFv|+|FFe| ≤ 2n-3 for n ≥ 5.
Content from these authors
© 2014 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top